Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 409
Filtrar
1.
Sci Rep ; 14(1): 10777, 2024 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734687

RESUMO

Emerging evidence has documented that circadian rhythm disorders could be related to cardiovascular diseases. However, there is limited knowledge on the direct adverse effects of circadian misalignment on the heart. This study aimed to investigate the effect of chronic circadian rhythm disorder on heart homeostasis in a mouse model of consistent jetlag. The jetlag model was induced in mice by a serial 8-h phase advance of the light cycle using a light-controlled isolation box every 4 days for up to 3 months. Herein, we demonstrated for the first time that chronic circadian rhythm disorder established in the mouse jetlag model could lead to HFpEF-like phenotype such as cardiac hypertrophy, cardiac fibrosis, and cardiac diastolic dysfunction, following the attenuation of the Clock-sGC-cGMP-PKG1 signaling. In addition, clock gene knock down in cardiomyocytes induced hypertrophy via decreased sGC-cGMP-PKG signaling pathway. Furthermore, treatment with an sGC-activator riociguat directly attenuated the adverse effects of jetlag model-induced cardiac hypertrophy, cardiac fibrosis, and cardiac diastolic dysfunction. Our data suggest that circadian rhythm disruption could induce HFpEF-like phenotype through downregulation of the clock-sGC-cGMP-PKG1 signaling pathway. sGC could be one of the molecular targets against circadian rhythm disorder-related heart disease.


Assuntos
Proteínas CLOCK , GMP Cíclico , Insuficiência Cardíaca , Transdução de Sinais , Guanilil Ciclase Solúvel , Animais , Camundongos , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/fisiopatologia , GMP Cíclico/metabolismo , Guanilil Ciclase Solúvel/metabolismo , Proteínas CLOCK/metabolismo , Proteínas CLOCK/genética , Masculino , Modelos Animais de Doenças , Fenótipo , Proteína Quinase Dependente de GMP Cíclico Tipo I/metabolismo , Proteína Quinase Dependente de GMP Cíclico Tipo I/genética , Miócitos Cardíacos/metabolismo , Ritmo Circadiano/fisiologia , Camundongos Endogâmicos C57BL , Transtornos Cronobiológicos/metabolismo , Volume Sistólico
2.
Cell Metab ; 36(2): 377-392.e11, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38194970

RESUMO

Recent studies have shown that the hypothalamus functions as a control center of aging in mammals that counteracts age-associated physiological decline through inter-tissue communications. We have identified a key neuronal subpopulation in the dorsomedial hypothalamus (DMH), marked by Ppp1r17 expression (DMHPpp1r17 neurons), that regulates aging and longevity in mice. DMHPpp1r17 neurons regulate physical activity and WAT function, including the secretion of extracellular nicotinamide phosphoribosyltransferase (eNAMPT), through sympathetic nervous stimulation. Within DMHPpp1r17 neurons, the phosphorylation and subsequent nuclear-cytoplasmic translocation of Ppp1r17, regulated by cGMP-dependent protein kinase G (PKG; Prkg1), affect gene expression regulating synaptic function, causing synaptic transmission dysfunction and impaired WAT function. Both DMH-specific Prkg1 knockdown, which suppresses age-associated Ppp1r17 translocation, and the chemogenetic activation of DMHPpp1r17 neurons significantly ameliorate age-associated dysfunction in WAT, increase physical activity, and extend lifespan. Thus, these findings clearly demonstrate the importance of the inter-tissue communication between the hypothalamus and WAT in mammalian aging and longevity control.


Assuntos
Envelhecimento , Longevidade , Camundongos , Animais , Neurônios/metabolismo , Transmissão Sináptica , Tecido Adiposo/metabolismo , Hipotálamo/metabolismo , Núcleo Hipotalâmico Dorsomedial/metabolismo , Mamíferos/metabolismo , Proteína Quinase Dependente de GMP Cíclico Tipo I/metabolismo
3.
Am J Reprod Immunol ; 90(6): e13795, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38009056

RESUMO

BACKGROUND: Naringenin (NGEN) has anti-inflammatory and anti-diabetic effects. On this basis, this study aims to determine whether NGEN affects insulin resistance (IR) in polycystic ovary syndrome (PCOS). METHODS: CCK-8 assay and oil red O staining were used to detect the cytotoxicity of NGEN and lipid production in cells or tissues, respectively. The differentiated mature SW872 cells were treated with palmitic acid (PA) to mimic IR cell model. Through detecting glucose consumption, the changes of inflammation and glycolipid metabolism can be observed with the assessment on expression levels of the inflammatory factors as well as lipid synthesis- (ACC, SREBP1c, PPARγ), glucose metabolism- and thermogenesis (ATGL, GLUT4, UCP1)-related genes. Insulin sensitivity was determined by changes in glucose consumption and PKGIα pathway. PKGIα was silenced to verify the protective mechanism of NGEN. PCOS rat model was constructed to confirm the results of cell experiments in vivo. RESULTS: NGEN generated no effect on SW872 cell viability. SW872 cells were differentiated and mature, as evidenced by lipid droplet formation, lipid synthesis gene activation, sugar metabolism and inhibition of thermogenesis-related genes. PA induction promoted lipid synthesis in mature adipocytes, and inhibited glucose metabolism and cell insulin sensitivity. NGEN pretreatment effectively alleviated the above-mentioned abnormalities. The protective mechanism of NGEN was achieved through promoting PKGIα activation. NGEN also mitigated the abnormal glucose and lipid metabolism in PCOS rats. CONCLUSION: NGEN inhibits the expression of PKGIα to alleviate IR that occurs in PCOS.


Assuntos
Resistência à Insulina , Síndrome do Ovário Policístico , Humanos , Feminino , Ratos , Animais , Insulina/metabolismo , Resistência à Insulina/fisiologia , Síndrome do Ovário Policístico/genética , Proteína Quinase Dependente de GMP Cíclico Tipo I/metabolismo , Adipócitos/metabolismo , Glucose , Lipídeos
4.
Commun Biol ; 6(1): 798, 2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37524852

RESUMO

cGMP-dependent protein kinase I-α (PKG1α) is a target for pulmonary arterial hypertension due to its role in the regulation of smooth muscle function. While most work has focused on regulation of cGMP turnover, we recently described several small molecule tool compounds which were capable of activating PKG1α via a cGMP independent pathway. Selected molecules were crystallized in the presence of PKG1α and were found to bind to an allosteric site proximal to the low-affinity nucleotide binding domain. These molecules act to displace the switch helix and cause activation of PKG1α representing a new mechanism for the activation and control of this critical therapeutic path. The described structures are vital to understanding the function and control of this key regulatory pathway.


Assuntos
Proteína Quinase Dependente de GMP Cíclico Tipo I , Proteína Quinase Dependente de GMP Cíclico Tipo I/metabolismo
5.
Int J Mol Sci ; 24(12)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37372987

RESUMO

The inositol triphosphate-associated proteins IRAG1 and IRAG2 are cGMP kinase substrate proteins that regulate intracellular Ca2+. Previously, IRAG1 was discovered as a 125 kDa membrane protein at the endoplasmic reticulum, which is associated with the intracellular Ca2+ channel IP3R-I and the PKGIß and inhibits IP3R-I upon PKGIß-mediated phosphorylation. IRAG2 is a 75 kDa membrane protein homolog of IRAG1 and was recently also determined as a PKGI substrate. Several (patho-)physiological functions of IRAG1 and IRAG2 were meanwhile elucidated in a variety of human and murine tissues, e.g., of IRAG1 in various smooth muscles, heart, platelets, and other blood cells, of IRAG2 in the pancreas, heart, platelets, and taste cells. Hence, lack of IRAG1 or IRAG2 leads to diverse phenotypes in these organs, e.g., smooth muscle and platelet disorders or secretory deficiency, respectively. This review aims to highlight the recent research regarding these two regulatory proteins to envision their molecular and (patho-)physiological tasks and to unravel their functional interplay as possible (patho-)physiological counterparts.


Assuntos
Proteína Quinase Dependente de GMP Cíclico Tipo I , Proteínas de Membrana , Camundongos , Humanos , Animais , Proteína Quinase Dependente de GMP Cíclico Tipo I/metabolismo , Proteínas de Membrana/metabolismo , Músculo Liso/metabolismo , Plaquetas/metabolismo , Retículo Endoplasmático/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo
6.
Int J Mol Sci ; 24(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36835364

RESUMO

The permeability of the glomerular filtration barrier (GFB) is mainly regulated by podocytes and their foot processes. Protein kinase G type Iα (PKGIα) and adenosine monophosphate-dependent kinase (AMPK) affect the contractile apparatus of podocytes and influence the permeability of the GFB. Therefore, we studied the interplay between PKGIα and AMPK in cultured rat podocytes. The glomerular permeability to albumin and transmembrane FITC-albumin flux decreased in the presence of AMPK activators and increased in the presence of PKG activators. The knockdown of PKGIα or AMPK with small-interfering RNA (siRNA) revealed a mutual interaction between PKGIα and AMPK and influenced podocyte permeability to albumin. Moreover, PKGIα siRNA activated the AMPK-dependent signaling pathway. AMPKα2 siRNA increased basal levels of phosphorylated myosin phosphate target subunit 1 and decreased the phosphorylation of myosin light chain 2. Podocytes that were treated with AMPK or PKG activators were characterized by the different organization of actin filaments within the cell. Our findings suggest that mutual interactions between PKGIα and AMPKα2 regulate the contractile apparatus and permeability of the podocyte monolayer to albumin. Understanding this newly identified molecular mechanism in podocytes provides further insights into the pathogenesis of glomerular disease and novel therapeutic targets for glomerulopathies.


Assuntos
Albuminas , Proteína Quinase Dependente de GMP Cíclico Tipo I , Podócitos , Animais , Ratos , Monofosfato de Adenosina/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Proteína Quinase Dependente de GMP Cíclico Tipo I/metabolismo , Permeabilidade , Podócitos/metabolismo , Ratos Wistar , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Albuminas/metabolismo
7.
Elife ; 112022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35929723

RESUMO

Cyclic GMP-dependent protein kinases (PKGs) are key mediators of the nitric oxide/cyclic guanosine monophosphate (cGMP) signaling pathway that regulates biological functions as diverse as smooth muscle contraction, cardiac function, and axon guidance. Understanding how cGMP differentially triggers mammalian PKG isoforms could lead to new therapeutics that inhibit or activate PKGs, complementing drugs that target nitric oxide synthases and cyclic nucleotide phosphodiesterases in this signaling axis. Alternate splicing of PRKG1 transcripts confers distinct leucine zippers, linkers, and auto-inhibitory (AI) pseudo-substrate sequences to PKG Iα and Iß that result in isoform-specific activation properties, but the mechanism of enzyme auto-inhibition and its alleviation by cGMP is not well understood. Here, we present a crystal structure of PKG Iß in which the AI sequence and the cyclic nucleotide-binding (CNB) domains are bound to the catalytic domain, providing a snapshot of the auto-inhibited state. Specific contacts between the PKG Iß AI sequence and the enzyme active site help explain isoform-specific activation constants and the effects of phosphorylation in the linker. We also present a crystal structure of a PKG I CNB domain with an activating mutation linked to Thoracic Aortic Aneurysms and Dissections. Similarity of this structure to wildtype cGMP-bound domains and differences with the auto-inhibited enzyme provide a mechanistic basis for constitutive activation. We show that PKG Iß auto-inhibition is mediated by contacts within each monomer of the native full-length dimeric protein, and using the available structural and biochemical data we develop a model for the regulation and cooperative activation of PKGs.


Assuntos
Proteína Quinase Dependente de GMP Cíclico Tipo I , Óxido Nítrico , Animais , GMP Cíclico , Mamíferos , Fosforilação , Isoformas de Proteínas
8.
J Biol Chem ; 298(9): 102284, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35868561

RESUMO

cGMP-dependent protein kinase (PKG) represents a compelling drug target for treatment of cardiovascular diseases. PKG1 is the major effector of beneficial cGMP signaling which is involved in smooth muscle relaxation and vascular tone, inhibition of platelet aggregation and signaling that leads to cardioprotection. In this study, a novel piperidine series of activators previously identified from an ultrahigh-throughput screen were validated to directly bind partially activated PKG1α and subsequently enhance its kinase activity in a concentration-dependent manner. Compounds from initial optimization efforts showed an ability to activate PKG1α independent of the endogenous activator, cGMP. We demonstrate these small molecule activators mimic the effect of cGMP on the kinetic parameters of PKG1α by positively modulating the KM of the peptide substrate and negatively modulating the apparent KM for ATP with increase in catalytic efficiency, kcat. In addition, these compounds also allosterically modulate the binding affinity of cGMP for PKG1α by increasing the affinity of cGMP for the high-affinity binding site (CNB-A) and decreasing the affinity of cGMP for the low-affinity binding site (CNB-B). We show the mode of action of these activators involves binding to an allosteric site within the regulatory domain, near the CNB-B binding site. To the best of our knowledge, these are the first reported non-cGMP mimetic small molecules shown to directly activate PKG1α. Insights into the mechanism of action of these compounds will enable future development of cardioprotective compounds that function through novel modes of action for the treatment of cardiovascular diseases.


Assuntos
Doenças Cardiovasculares , Proteína Quinase Dependente de GMP Cíclico Tipo I , GMP Cíclico , Piperidinas , Trifosfato de Adenosina/metabolismo , Regulação Alostérica/efeitos dos fármacos , Sítio Alostérico/efeitos dos fármacos , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/enzimologia , GMP Cíclico/metabolismo , Proteína Quinase Dependente de GMP Cíclico Tipo I/metabolismo , Humanos , Piperidinas/farmacologia , Piperidinas/uso terapêutico , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
9.
J Med Chem ; 65(15): 10318-10340, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35878399

RESUMO

Activation of PKG1α is a compelling strategy for the treatment of cardiovascular diseases. As the main effector of cyclic guanosine monophosphate (cGMP), activation of PKG1α induces smooth muscle relaxation in blood vessels, lowers pulmonary blood pressure, prevents platelet aggregation, and protects against cardiac stress. The development of activators has been mostly limited to cGMP mimetics and synthetic peptides. Described herein is the optimization of a piperidine series of small molecules to yield activators that demonstrate in vitro phosphorylation of vasodilator-stimulated phosphoprotein as well as antiproliferative effects in human pulmonary arterial smooth muscle cells. Hydrogen/deuterium exchange mass spectrometry experiments with the small molecule activators revealed a mechanism of action consistent with cGMP-induced activation, and an X-ray co-crystal structure with a construct encompassing the regulatory domains illustrated a binding mode in an allosteric pocket proximal to the low-affinity cyclic nucleotide-binding domain.


Assuntos
Proteína Quinase Dependente de GMP Cíclico Tipo I , GMP Cíclico , GMP Cíclico/metabolismo , Proteína Quinase Dependente de GMP Cíclico Tipo I/genética , Proteína Quinase Dependente de GMP Cíclico Tipo I/metabolismo , Humanos , Miócitos de Músculo Liso , Fosforilação , Processamento de Proteína Pós-Traducional
10.
Biochim Biophys Acta Mol Cell Res ; 1869(9): 119301, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35642843

RESUMO

Podocyte foot processes are an important cellular layer of the glomerular barrier that regulates glomerular permeability. Insulin via the protein kinase G type Iα (PKGIα) signaling pathway regulates the balance between contractility and relaxation (permeability) of the podocyte barrier by regulation of the actin cytoskeleton. This mechanism was shown to be disrupted in diabetes. Rho family guanosine-5'-triphosphates (GTPases) are dynamic modulators of the actin cytoskeleton and expressed in cells that form the glomerular filtration barrier. Thus, changes in Rho GTPase activity may affect glomerular permeability to albumin. The present study showed that Rho family GTPases control podocyte migration and permeability. Moreover these processes are regulated by insulin in PKGIα-dependent manner. Modulation of the PKGI-dependent activity of Rac1 and RhoA GTPases with inhibitors or small-interfering RNA impair glomerular permeability to albumin. We also demonstrated this mechanism in obese, insulin-resistant Zucker rats. We propose that PKGIα-Rac1-RhoA crosstalk is necessary in proper organization of the podocyte cytoskeleton and consequently the stabilization of glomerular architecture and regulation of filtration barrier permeability.


Assuntos
Proteína Quinase Dependente de GMP Cíclico Tipo I , Podócitos , Albuminas/metabolismo , Animais , Proteína Quinase Dependente de GMP Cíclico Tipo I/metabolismo , Citoesqueleto/metabolismo , Insulina/metabolismo , Permeabilidade , Podócitos/metabolismo , Ratos , Ratos Wistar , Ratos Zucker , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
11.
J Biol Chem ; 298(8): 102175, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35752367

RESUMO

Type I cGMP-dependent protein kinases (PKGIs) are important components of various signaling pathways and are canonically activated by nitric oxide- and natriuretic peptide-induced cGMP generation. However, some reports have shown that PKGIα can also be activated in vitro by oxidizing agents. Using in vitro kinase assays, here, we found that purified PKGIα stored in PBS with Flag peptide became oxidized and activated even in the absence of oxidizing agent; furthermore, once established, this activation could not be reversed by reduction with DTT. We demonstrate that activation was enhanced by addition of Cu2+ before storage, indicating it was driven by oxidation and mediated by trace metals present during storage. Previous reports suggested that PKGIα Cys43, Cys118, and Cys196 play key roles in oxidation-induced kinase activation; we show that activation was reduced by C118A or C196V mutations, although C43S PKGIα activation was not reduced. In contrast, under the same conditions, purified PKGIß activity only slightly increased with storage. Using PKGIα/PKGIß chimeras, we found that residues throughout the PKGIα-specific autoinhibitory loop were responsible for this activation. To explore whether oxidants activate PKGIα in H9c2 and C2C12 cells, we monitored vasodilator-stimulated phosphoprotein phosphorylation downstream of PKGIα. While we observed PKGIα Cys43 crosslinking in response to H2O2 (indicating an oxidizing environment in the cells), we were unable to detect increased vasodilator-stimulated phosphoprotein phosphorylation under these conditions. Taken together, we conclude that while PKGIα can be readily activated by oxidation in vitro, there is currently no direct evidence of oxidation-induced PKGIα activation in vivo.


Assuntos
Proteína Quinase Dependente de GMP Cíclico Tipo I , Peróxido de Hidrogênio , GMP Cíclico/metabolismo , Proteína Quinase Dependente de GMP Cíclico Tipo I/metabolismo , Óxido Nítrico/metabolismo , Oxidantes , Oxirredução , Fosforilação
12.
Physiol Rep ; 10(4): e15177, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35179826

RESUMO

Stromal interaction molecule 1 (STIM1) is a major regulator of store-operated calcium entry in non-excitable cells. Recent studies have suggested that STIM1 plays a role in pathological hypertrophy; however, the physiological role of STIM1 in the heart is not well understood. We have shown that mice with a cardiomyocyte deletion of STIM1 (cr STIM1-/- ) develop ER stress, mitochondrial, and metabolic abnormalities, and dilated cardiomyopathy. However, the specific signaling pathways and kinases regulated by STIM1 are largely unknown. Therefore, we used a discovery-based kinomics approach to identify kinases differentially regulated by STIM1. Twelve-week male control and cr STIM1-/- mice were injected with saline or phenylephrine (PE, 15 mg/kg, s.c, 15 min), and hearts obtained for analysis of the Serine/threonine kinome. Primary analysis was performed using BioNavigator 6.0 (PamGene), using scoring from the Kinexus PhosphoNET database and GeneGo network modeling, and confirmed using standard immunoblotting. Kinomics revealed significantly lower PKG and protein kinase C (PKC) signaling in the hearts of the cr STIM1-/- in comparison to control hearts, confirmed by immunoblotting for the calcium-dependent PKC isoform PKCα and its downstream target MARCKS. Similar reductions in cr STIM1-/- hearts were found for the kinases: MEK1/2, AMPK, and PDPK1, and in the activity of the Ca2+ -dependent phosphatase, calcineurin. Electrocardiogram analysis also revealed that cr STIM1-/- mice have significantly lower HR and prolonged QT interval. In conclusion, we have shown several calcium-dependent kinases and phosphatases are regulated by STIM1 in the adult mouse heart. This has important implications in understanding how STIM1 contributes to the regulation of cardiac physiology and pathophysiology.


Assuntos
Miócitos Cardíacos/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Potenciais de Ação , Animais , Calcineurina/metabolismo , Sinalização do Cálcio , Células Cultivadas , Proteína Quinase Dependente de GMP Cíclico Tipo I/metabolismo , Estresse do Retículo Endoplasmático , Frequência Cardíaca , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase C/metabolismo , Molécula 1 de Interação Estromal/genética
13.
Hypertension ; 79(5): 946-956, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35168371

RESUMO

BACKGROUND: We previously demonstrated that nitroxyl causes vasodilation, at least in part, by inducing the formation of an intradisulfide bond between C117 and C195 in the high affinity cyclic guanosine monophosphate-binding site of PKGI (cyclic guanosine monophosphate-dependent protein kinase I). The aim of this study was to determine whether nitroxyl donors lower blood pressure via this novel PKGI activation mechanism in vivo. METHODS: To determine this, a C195S PKGI knock-in mouse model was generated that ubiquitously and constitutively expresses a mutant kinase resistant to nitroxyl-induced intradisulfide activation. RESULTS: Knock-in and wild-type littermates did not differ in appearance, body weight, in PKGI protein expression or blood gas content. Organ weight was similar between genotypes apart from the cecum that was significantly enlarged in knock-in animals. Mean arterial pressure and heart rate monitored in vivo over 24 hours by radio-telemetry revealed neither a significant difference between genotypes at baseline nor during angiotensin II-induced hypertension or sepsis. CXL-1020, a clinically relevant nitroxyl donor, did not lower blood pressure in normotensive animals. In contrast, administering CXL-1020 to hypertensive wild-type mice reduced their blood pressure by 10±4 mm Hg (P=0.0184), whereas the knock-in littermates were unaffected. CONCLUSIONS: Oxidation of C195 in PKGI contributes to the antihypertensive effects observed in response to nitroxyl donors, emphasising the potential importance of nitroxyl donors in pathological scenarios when cyclic guanosine monophosphate levels are reduced and insufficient to activate PKGI.


Assuntos
Hipertensão , Hipotensão , Animais , Pressão Sanguínea , GMP Cíclico/metabolismo , Proteína Quinase Dependente de GMP Cíclico Tipo I/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/química , Proteínas Quinases Dependentes de GMP Cíclico/genética , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Guanosina/farmacologia , Guanosina Monofosfato/farmacologia , Hipertensão/tratamento farmacológico , Hipertensão/genética , Camundongos , Óxidos de Nitrogênio , Proteínas Quinases/farmacologia
14.
Nat Commun ; 13(1): 728, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35132099

RESUMO

Postsynaptic NMDARs at spinal synapses are required for postsynaptic long-term potentiation and chronic pain. However, how presynaptic NMDARs (PreNMDARs) in spinal nociceptor terminals control presynaptic plasticity and pain hypersensitivity has remained unclear. Here we report that PreNMDARs in spinal nociceptor terminals modulate synaptic transmission in a nociceptive tone-dependent manner. PreNMDARs depresses presynaptic transmission in basal state, while paradoxically causing presynaptic potentiation upon injury. This state-dependent modulation is dependent on Ca2+ influx via PreNMDARs. Small conductance Ca2+-activated K+ (SK) channels are responsible for PreNMDARs-mediated synaptic depression. Rather, tissue inflammation induces PreNMDARs-PKG-I-dependent BDNF secretion from spinal nociceptor terminals, leading to SK channels downregulation, which in turn converts presynaptic depression to potentiation. Our findings shed light on the state-dependent characteristics of PreNMDARs in spinal nociceptor terminals on modulating nociceptive transmission and revealed a mechanism underlying state-dependent transition. Moreover, we identify PreNMDARs in spinal nociceptor terminals as key constituents of activity-dependent pain sensitization.


Assuntos
Dor Crônica/fisiopatologia , Nociceptores/metabolismo , Terminações Pré-Sinápticas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cálcio/metabolismo , Dor Crônica/genética , Dor Crônica/metabolismo , Proteína Quinase Dependente de GMP Cíclico Tipo I/genética , Proteína Quinase Dependente de GMP Cíclico Tipo I/metabolismo , Gânglios Espinais/citologia , Gânglios Espinais/fisiologia , Inflamação , Potenciação de Longa Duração , Depressão Sináptica de Longo Prazo , Camundongos , Camundongos Transgênicos , Substância Cinzenta Periaquedutal/citologia , Substância Cinzenta Periaquedutal/fisiologia , Canais de Potássio Cálcio-Ativados/genética , Canais de Potássio Cálcio-Ativados/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Transmissão Sináptica
15.
Int J Mol Sci ; 24(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36614110

RESUMO

Achalasia is an esophageal smooth muscle motility disorder with unknown pathogenesis. Taking into account our previous results on the downexpression of miR-200c-3p in tissues of patients with achalasia correlated with an increased expression of PRKG1, SULF1, and SYDE1 genes, our aim was to explore the unknown biological interaction between these genes and human miR-200c-3p and if this relation could unravel their functional role in the etiology of achalasia. To search for putative miR-200c-3p binding sites in the 3'-UTR of PRKG1, SULF1 and SYDE1, a bioinformatics tool was used. To test whether PRKG1, SULF1, and SYDE1 are targeted by miR-200c-3p, a dual-luciferase reporter assay and quantitative PCR on HEK293 and fibroblast cell lines were performed. To explore the biological correlation between PRKG1 and miR-200c-3p, an immunoblot analysis was carried out. The overexpression of miR-200c-3p reduced the luciferase activity in cells transfected with a luciferase reporter containing a fragment of the 3'-UTR regions of PRKG1, SULF1, and SYDE1 which included the miR-200c-3p seed sequence. The deletion of the miR-200c-3p seed sequence from the 3'-UTR fragments abrogated this reduction. A negative correlation between miR-200c-3p and PRKG1, SULF1, and SYDE1 expression levels was observed. Finally, a reduction of the endogenous level of PRKG1 in cells overexpressing miR-200c-3p was detected. Our study provides, for the first time, functional evidence about the PRKG1 gene as a direct target and SULF1 and SYDE1 as potential indirect substrates of miR-200c-3p and suggests the involvement of NO/cGMP/PKG signaling in the pathogenesis of achalasia.


Assuntos
Proteína Quinase Dependente de GMP Cíclico Tipo I , Acalasia Esofágica , MicroRNAs , Humanos , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células/genética , Proteína Quinase Dependente de GMP Cíclico Tipo I/metabolismo , Acalasia Esofágica/genética , Células HEK293 , MicroRNAs/genética , MicroRNAs/metabolismo
16.
Br J Pharmacol ; 179(11): 2413-2429, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34000062

RESUMO

BACKGROUND AND PURPOSE: Heart failure is associated with high morbidity and mortality, and new therapeutic targets are needed. Preclinical data suggest that pharmacological activation of protein kinase G (PKG) can reduce maladaptive ventricular remodelling and cardiac dysfunction in the stressed heart. However, clinical trial results have been mixed and the effects of long-term PKG activation in the heart are unknown. EXPERIMENTAL APPROACH: We characterized the cardiac phenotype of mice carrying a heterozygous knock-in mutation of PKG1 (Prkg1R177Q/+ ), which causes constitutive, cGMP-independent activation of the kinase. We examined isolated cardiac myocytes and intact mice, the latter after stress induced by surgical transaortic constriction or angiotensin II (Ang II) infusion. KEY RESULTS: Cardiac myocytes from Prkg1R177Q/+ mice showed altered phosphorylation of sarcomeric proteins and reduced contractility in response to electrical stimulation, compared to cells from wild type mice. Under basal conditions, young PKG1R177Q/+ mice exhibited no obvious cardiac abnormalities, but aging animals developed mild increases in cardiac fibrosis. In response to angiotensin II infusion or fixed pressure overload induced by transaortic constriction, young PKGR177Q/+ mice exhibited excessive hypertrophic remodelling with increased fibrosis and myocyte apoptosis, leading to increased left ventricular dilation and dysfunction compared to wild type litter mates. CONCLUSION AND IMPLICATIONS: Long-term PKG1 activation in mice may be harmful to the heart, especially in the presence of pressure overload and neurohumoral stress. LINKED ARTICLES: This article is part of a themed issue on cGMP Signalling in Cell Growth and Survival. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.11/issuetoc.


Assuntos
Angiotensina II , Cardiomiopatias , Angiotensina II/metabolismo , Angiotensina II/farmacologia , Animais , Proteína Quinase Dependente de GMP Cíclico Tipo I/genética , Proteína Quinase Dependente de GMP Cíclico Tipo I/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos , Remodelação Ventricular
17.
Br J Pharmacol ; 179(7): 1287-1303, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34599830

RESUMO

Recent studies have shown that NO is a central mediator in diseases associated with thoracic aortic aneurysm, such as Marfan syndrome. The progressive dilation of the aorta in thoracic aortic aneurysm ultimately leads to aortic dissection. Unfortunately, current medical treatments have neither halt aortic enlargement nor prevented rupture, leaving surgical repair as the only effective treatment. There is therefore a pressing need for effective therapies to delay or even avoid the need for surgical repair in thoracic aortic aneurysm patients. Here, we summarize the mechanisms through which NO signalling dysregulation causes thoracic aortic aneurysm, particularly in Marfan syndrome. We discuss recent advances based on the identification of new Marfan syndrome mediators related to pathway overactivation that represent potential disease biomarkers. Likewise, we propose iNOS, sGC and PRKG1, whose pharmacological inhibition reverses aortopathy in Marfan syndrome mice, as targets for therapeutic intervention in thoracic aortic aneurysm and are candidates for clinical trials.


Assuntos
Aneurisma da Aorta Torácica , Aneurisma Aórtico , Dissecção Aórtica , Síndrome de Marfan , Dissecção Aórtica/complicações , Dissecção Aórtica/cirurgia , Animais , Aorta , Aneurisma Aórtico/complicações , Aneurisma da Aorta Torácica/etiologia , Aneurisma da Aorta Torácica/prevenção & controle , Aneurisma da Aorta Torácica/cirurgia , Proteína Quinase Dependente de GMP Cíclico Tipo I , Humanos , Síndrome de Marfan/complicações , Síndrome de Marfan/tratamento farmacológico , Síndrome de Marfan/cirurgia , Camundongos
18.
Cardiovasc Res ; 118(12): 2703-2717, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34550322

RESUMO

AIMS: Intimal hyperplasia is a common feature of vascular remodelling disorders. Accumulation of synthetic smooth muscle cell (SMC)-like cells is the main underlying cause. Current therapeutic approaches including drug-eluting stents are not perfect due to the toxicity on endothelial cells and novel therapeutic strategies are needed. Our preliminary screening for dysregulated cyclic nucleotide phosphodiesterases (PDEs) in growing SMCs revealed the alteration of PDE10A expression. Herein, we investigated the function of PDE10A in SMC proliferation and intimal hyperplasia both in vitro and in vivo. METHODS AND RESULTS: RT-qPCR, immunoblot, and in situ proximity ligation assay were performed to determine PDE10A expression in synthetic SMCs and injured vessels. We found that PDE10A mRNA and/or protein levels are up-regulated in cultured SMCs upon growth stimulation, as well as in intimal cells in injured mouse femoral arteries. To determine the cellular functions of PDE10A, we focused on its role in SMC proliferation. The anti-mitogenic effects of PDE10A on SMCs were evaluated via cell counting, BrdU incorporation, and flow cytometry. We found that PDE10A deficiency or inhibition arrested the SMC cell cycle at G1-phase with a reduction of cyclin D1. The anti-mitotic effect of PDE10A inhibition was dependent on cGMP-dependent protein kinase Iα (PKGIα), involving C-natriuretic peptide (CNP) and particulate guanylate cyclase natriuretic peptide receptor 2 (NPR2). In addition, the effects of genetic depletion and pharmacological inhibition of PDE10A on neointimal formation were examined in a mouse model of femoral artery wire injury. Both PDE10A knockout and inhibition decreased injury-induced intimal thickening in femoral arteries by at least 50%. Moreover, PDE10A inhibition decreased ex vivo remodelling of cultured human saphenous vein segments. CONCLUSIONS: Our findings indicate that PDE10A contributes to SMC proliferation and intimal hyperplasia at least partially via antagonizing CNP/NPR2/cGMP/PKG1α signalling and suggest that PDE10A may be a novel drug target for treating vascular occlusive disease.


Assuntos
Músculo Liso Vascular , Lesões do Sistema Vascular , Animais , Bromodesoxiuridina/metabolismo , Bromodesoxiuridina/farmacologia , Proliferação de Células , Células Cultivadas , GMP Cíclico/metabolismo , Proteína Quinase Dependente de GMP Cíclico Tipo I/metabolismo , Ciclina D1/metabolismo , Células Endoteliais/metabolismo , Guanilato Ciclase/metabolismo , Guanilato Ciclase/farmacologia , Humanos , Hiperplasia/metabolismo , Hiperplasia/patologia , Camundongos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Diester Fosfórico Hidrolases/metabolismo , RNA Mensageiro/metabolismo , Remodelação Vascular , Lesões do Sistema Vascular/tratamento farmacológico , Lesões do Sistema Vascular/genética , Lesões do Sistema Vascular/metabolismo
19.
Nat Commun ; 12(1): 6626, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34785665

RESUMO

During systemic inflammation, indoleamine 2,3-dioxygenase 1 (IDO1) becomes expressed in endothelial cells where it uses hydrogen peroxide (H2O2) to oxidize L-tryptophan to the tricyclic hydroperoxide, cis-WOOH, that then relaxes arteries via oxidation of protein kinase G 1α. Here we show that arterial glutathione peroxidases and peroxiredoxins that rapidly eliminate H2O2, have little impact on relaxation of IDO1-expressing arteries, and that purified IDO1 forms cis-WOOH in the presence of peroxiredoxin 2. cis-WOOH oxidizes protein thiols in a selective and stereospecific manner. Compared with its epimer trans-WOOH and H2O2, cis-WOOH reacts slower with the major arterial forms of glutathione peroxidases and peroxiredoxins while it reacts more readily with its target, protein kinase G 1α. Our results indicate a paradigm of redox signaling by H2O2 via its enzymatic conversion to an amino acid-derived hydroperoxide that 'escapes' effective reductive inactivation to engage in selective oxidative activation of key target proteins.


Assuntos
Peróxido de Hidrogênio/metabolismo , Peroxidases/química , Peroxidases/metabolismo , Transdução de Sinais , Animais , Proteína Quinase Dependente de GMP Cíclico Tipo I , Células Endoteliais/metabolismo , Proteínas de Homeodomínio/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Inflamação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução , Peroxidases/genética , Peroxirredoxinas/metabolismo , Triptofano/metabolismo
20.
Int J Mol Sci ; 22(18)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34576086

RESUMO

The cysteine-rich LIM-only protein 4 (CRP4), a LIM-domain and zinc finger containing adapter protein, has been implicated as a downstream effector of the second messenger 3',5'-cyclic guanosine monophosphate (cGMP) pathway in multiple cell types, including vascular smooth muscle cells (VSMCs). VSMCs and nitric oxide (NO)-induced cGMP signaling through cGMP-dependent protein kinase type I (cGKI) play fundamental roles in the physiological regulation of vascular tone and arterial blood pressure (BP). However, it remains unclear whether the vasorelaxant actions attributed to the NO/cGMP axis require CRP4. This study uses mice with a targeted deletion of the CRP4 gene (CRP4 KO) to elucidate whether cGMP-elevating agents, which are well known for their vasorelaxant properties, affect vessel tone, and thus, BP through CRP4. Cinaciguat, a NO- and heme-independent activator of the NO-sensitive (soluble) guanylyl cyclase (NO-GC) and NO-releasing agents, relaxed both CRP4-proficient and -deficient aortic ring segments pre-contracted with prostaglandin F2α. However, the magnitude of relaxation was slightly, but significantly, increased in vessels lacking CRP4. Accordingly, CRP4 KO mice presented with hypotonia at baseline, as well as a greater drop in systolic BP in response to the acute administration of cinaciguat, sodium nitroprusside, and carbachol. Mechanistically, loss of CRP4 in VSMCs reduced the Ca2+-sensitivity of the contractile apparatus, possibly involving regulatory proteins, such as myosin phosphatase targeting subunit 1 (MYPT1) and the regulatory light chain of myosin (RLC). In conclusion, the present findings confirm that the adapter protein CRP4 interacts with the NO-GC/cGMP/cGKI pathway in the vasculature. CRP4 seems to be part of a negative feedback loop that eventually fine-tunes the NO-GC/cGMP axis in VSMCs to increase myofilament Ca2+ desensitization and thereby the maximal vasorelaxant effects attained by (selected) cGMP-elevating agents.


Assuntos
Pressão Sanguínea , Vasos Sanguíneos/fisiologia , GMP Cíclico/metabolismo , Proteínas com Domínio LIM/metabolismo , Animais , Pressão Sanguínea/efeitos dos fármacos , Vasos Sanguíneos/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Proteína Quinase Dependente de GMP Cíclico Tipo I/metabolismo , Feminino , Masculino , Camundongos Knockout , Modelos Biológicos , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Óxido Nítrico/metabolismo , Norepinefrina/farmacologia , Transdução de Sinais , Guanilil Ciclase Solúvel/metabolismo , Vasodilatadores/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...